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Zener & Bilinsky have explained the observed high-temperature deviations from the Debye-Waller 
theory of the temperature dependence of the intensity of X-ray diffraction spectra in terms of the 
changes in O, the Debye characteristic temperature, as the temperature is raised. Their formula- 
tion for the temperature dependence of O is in terms of an empirical constant and the lattice 
enthalpy. We here give an alternative formulation in terms of the Griineisen constant and the 
volume. The two formulations of the temperattwe dependence of O are found to yield approximately 
the same results for NaC1 and KC1. The Debye-Waller factor has also been modified so as to yield 
a relationship linear in a reauced temperature scale that compensates for the change in O as the 
temperature is changed. The X-ray data when appropriately plotted do yield a straight line in 
agreement with the modified Debye-Waller factor. The slope of the straight line can be used to 
find the room-temperature value of O. The values found for NaC1 and KC1 are in reasonable agree- 
ment with values for O obtained from specific-heat measurements. 

Introduction 
Although the current theoretical trend (Peierls, 1955) 
is to take the Debye model as only a qualitative model 
of. the thermal properties of crystal lattices, never- 
theless in practice the Debye model does serve as a 
useful semi-empirical procedure for correlating various 
thermal data. I t  is therefore surprising that  the 
Debye-Waller theory of the temperature dependence 
of the intensity of the X-ray diffraction spectra 
seriously deviates from theory at higher temperatures 
(James & Firth, 1927; James & Brindley, 1928). 
Zener & Bilinsky (1936) have adequately explained 
the deviations in NaC1 (James & Firth, 1927) and 
KC1 (James & Brindley, 1928) in terms of the changes 
in the Debye characteristic temperature O as the 
temperature is raised. Their resulting expression for 
O(T) is in terms of an empirical constant (approx- 
imately equal to the constant appearing in the Nernst- 
Lindemann equation) and the lattice enthalpy. We 
shall here give an alternative formulation of the tem- 
perature dependence of the Debye characteristic tem- 
perature in terms of the Grfineisen constant and the 
volume (in some respect similar to a formulation of 
Owen & Williams (1947) in terms of the Einstein 
characteristic frequency). The main advantages of the 
present method are: it is easier to measure volume as 
a function of temperature than enthalpy, hence more 
volume data are available; it avoids some of the com- 
plications which arise in separating the lattice en- 
thalpy from the total enthalpy in cases where there 
are electronic and magnetic contributions to the total 
enthalpy (Hofmann, Paskin, Tauer & Weiss, 1956). 

Theory 
In Debye theory it is assumed that the volume of the 
crystal remains constant as the temperature changes. 

In actual practice the pressure remains constant and 
the volume changes owing to thermal expansion. Thus, 
it is to be expected that  O, which depends ,explicitly 
on volume (Fowler, 1955), will in turn vary with 
temperature. If O(T) is defined as the characteristic 
Debye temperature the crystal would exhibit if it were 
first expanded at T = 0 from volume V 0 to VT and 
then brought to temperature T at constant volume 
VT, it follows that  O(T) is equal to O(VT). Thus, the 
problem of finding O as a function of temperature can 
equivalently be solved in terms of the variation of O 
as a function of the volume. Leaving for the Appendix 
the mathematical details, the following equation is 
obtained for O(VT) in terms of the volume and the 
GriineJsen constant ~,: 

d In O(Vr)/dV = - T V  -1. (1) 

From the approximate constancy of ~ over the 
range of temperature of interest and the corresponding 
range of volume of interest, it is deduced that  ~, is 
likewise approximately independent of volume. Inte- 
grating (1), we find 

O(VT)/O(VTo) = O(T)/O(To) = ( V T o / V T )  ~'. (2) 

In practice, it is usually the linear expansion that  
is measured. For isotropic crystals, we therefore re- 
write (2) as follows: 

O(T)/O(To) = [l(To)/l(T)]aL (3) 

Comparison of present formulation with that of 
Zener & Bilinsky 

The relationship for the change in O with temperature 
found by Zener & Bilinsky (1936) is 

O(T)/O(To) = exp [ - K H ( T ) ] ,  (4) 
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where 

K =  (C~-C~)/TQCp and H(T)  = CpdT.  
To 

We here compare the results of equations (3) and (4) 
for NaC1 and KC1 in the region from 0 ° C. to 600 ° C. 
The linear expansion data needed for (3) are taken 
from the Handbook of Physical Constants (Birch, 
Schairer & Spicer, 1942) and the values for the 
Grtineisen constant from Slater (1939). The results 
for the Zener-Bilinsky equation are taken from their 
paper. A comparison of the results is given in Table 1. 

Table 1. Comparison of - in [0 (T)/O (To)] as a function 
of the temperature T ° C. as calculated for KC1 and :NaC1 
from the Zener-BilinsIcy enthalpy formulation and the 

present volume formulation 

The reference t empera tu re  is T o = 0 ° C. and the reference O 
is likewise O(T = 0 ° C.) 

T (°C.) 

Enthal py 
KC1 Volume 

( E n t h a l p y  
NaC1 Volume 

0 100 200 300 400 500 60.0 

0 0.017 0.035 0.053 0.072 0.089 0.11 
0 0-017 0.033 0.055 0"075 0.10 0.13 

0 0-019 0"039 0.058 0.078 0"099 0.12 
0 0.021 0.041 0.065 0.089 0-11 0. I3 

I t  can be seen tha t  the volume and enthalpy formula- 
tion yield almost identical results. 

R e v i s e d  D e b y e - W a l l e r  factor  

Zener & Bilinsky (1936) have already shown that  if 
the explicit temperature dependence of O is inserted 
in the Debye-Waller formula, the general features of 
the temperature dependence of the X-ray data  for 
NaC1 and KC1 are reproduced. As our formulation 
yields equivalent results, use of equation (3) in the 
Debye-Waller  formula will likewise reproduce ex- 
periment*. We shall here further show that  it is pos- 
sible to modify the form of the Debye-Waller factor 
so tha t  the X-ray intensities @ when plotted against 
a reduced temperature T' yield a straight line whose 
slope is simply related to O. 

We first limit ourselves to the region T ~ O and 
thus write 2M, the Debye-Waller factor (in terms of 
the notation of James (1954)) as 

12h e sin 9 0 T 
2M = . (5) 2 mIc~ O(T ) 

* I t  should be  no ted  t ha t  Owen & Will iams (1947) errone- 
ously  insert the  relat ionship for the  t empera tu re  dependence  
of the  Einste in  characteris t ic  f requency  or equiva len t  tempera-  
ture  in the D e b y e - W a l l e r  formula  der ived explici t ly for the  
I )ebye  model  of a solid and hence defined in te rms  of the  
D e b y e  characteris t ic  t empera ture .  For tu i tous ly ,  the  relat ive 
t empera tu re  dependence  of the  Einste in  and D e b y e  charac- 
teristic t empera tu res  are the  same. Hence,  Owen & Will iams's  
empirical  t r e a t m e n t  of their  data ,  which depends  only on the  
relat ive change in the  D e b y e  characteris t ic  t empera tu re ,  is 
val id despi te  their  interchange of Einstein and Debye  charac- 
teristic t empera tures .  

Introducing O(T) as given in (2), equation (5) can 
be written as 

2M - 12h2 sin2 0 / \VT 2~, 
~17~) T .  (6) mk~ 2 "-O(To) 

Thus, 2M is seen to be proportional to the reduced 
temperature T' = T(VT/VTo) 2r. As the intensity @ of 
a given spectrum is proportional to exp ( - 2 M ) ,  it  
follows that  

In @ T 12h 2 sin 2 0 
( T ' - T o ) .  (7) 

@To mk~20~To) 

From (7) it is evident tha t  a plot of in (@T/@To) versus 
T' should yield a straight line. In Figs. 1 (a) and 1 (b), 
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Fig. 1. (a) Comparison of plots  of the  logar i thm of the  rat ios 
of the  X - r a y  intensit ies from the 400 spect ra  of KC1 versus  
the  measured  t empera tu re  and the  reduced t empera tu re .  
The circles correspond to  the  d a t a  p lo t ted  against  the  re- 
duced t empera tu re  and the  crosses to the  d a t a  p lo t ted  
against  measured  tempera ture .  The s t ra ight  line d rawn  
through the  d a t a  corresponds to a room- tempera tu re  va lue  
of O --- 231 ° K.  (b) Comparison of plots  of the  logar i thm 
of the  ratios of a set  of X- ray  intensit ies f rom the  spec t ra  
of NaCl versus the  measured  t empera tu re  and the  reduced 
tempera ture .  The circles correspond to the  d a t a  p lo t t ed  
against  the  reduced t empera tu re  and the  crosses to the  d a t a  
p lo t t ed  against  the  measured  t empera tu re .  The s t ra ight  
line d rawn  through the  da t a  corresponds to a room-tem- 
pera ture  value of O----302 ° K.  

we compare the KC1 data  (James & Brindley, 1928) 
and NaC1 data  (James & Firth, 1927) as plotted versus 
T and T', taking T o = 290 ° K. as the reference tem- 
perature. I t  can be seen tha t  the data  better ap- 
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proximate a straight line when plotted versus T', 
in accord with equation (7) based on the explicit 
temperature dependence of 8.  I t  might be noted that  
the agreement with theory is better for KC1 than 
NaC1. This is not surprising when it is realized that  
the theory as such is derived for a monatomic crystal 
rather than the binary compounds here treated. In 
the case of KC1 the masses are almost equal and it 
may be treated as a simple solid. In the case of NaC1 
a more sophisticated treatment would require the data 
to be analyzed in terms of two characteristic tem- 
peratures (James &Firch,  1927), one for each atom 
type. In the absence of appropriate data over the tem- 
perature range to allow such a separation of the 
behavior of the two atom types, we have only been 
able to study the average effect (James & Firth, 1927). 
From the slope of the straight line on the reduced 
temperature plot, the room-temperature value of 8 
can be found. The values obtained here are 8(KC1) = 
231 ° K. and 8(NaC1)= 302 ° K., as compared to 
8 (KCI) - -230  ° K. and 8(NaC1)--281 ° K. obtained 
from specific-heat data (James, 1954). 

I t  is therefore concluded that  the Debye-Waller 
theory, when modified to take into account the tem- 
perature dependence of the characteristic tempera- 
ture, is a reasonable way of semi-empirically correlat- 
ing the temperature dependence of X-ray diffraction 
intensities. In the light of the empirical nature of the 
Debye characteristic temperature it is further grati- 
fying to find that  8 obtained from specific heat and 
X-ray measurements are in agreement. 

A P P E N D I X  

Although there are various derivations of dS/dV in 
the literature, for completeness we include an alter- 
native derivation. 8(V) can be expressed in terms of k, 
the compressibility and, fl, the coefficient of volume 
expansion, by some simple manipulation of derivatives 
involving, p, the pressure, E, the energy and S, the 
entropy. These quantities are related as follows: 

~E ~s (A-l) 
- P  = \ o v  /~,= d-? " 
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Making use of the fact that  in Debye theory, E = 
8 F ( 8 / T )  and S = S(8/T) ,  equation (A-l) can be 
written as 

- p - -  E - T  ~ v+ - ~  v d V  ' 

-- Ed  In 8 / d V .  (A-3) 

The simplification of (A-2) results from noting that  
T(8S/ST)v = (SE/ST)v = Cv. Taking the partial of p 
with respect to T, we further find that  

- (Sp lST)v  = Cvd ln 81dV = - f l / k  , (A-4) 
where 

f l =  V-I(~V/~T)p and k = - V - I ( ~ V / ~ p ) r .  

O is finally obtained as a function of the volume only, 
by introducing the Griineisen relationship 7 = 
Vfl/Cvk into (A-4), yielding 

d In O/d V = - 7  V-1 " 
(A-5) 
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